挥发性有机物VOCs监测方法与治理技术3
3.1回收技术
对于高浓度、较贵重、具回收价值的VOCs,宜采用回收技术加以循环利用。常用回收技术主要有吸收、吸附、冷凝、膜分离、膜基吸收技术等。
3.1.1液体吸收技术
液体吸收技术是依据有机物相似相溶原理,采用沸点较高、蒸汽压较低有机溶剂作为吸收剂,利用VOCs在吸收剂中溶解度或化学反应特性差异,使VOCs从气相转移到液相,然后对吸收液进行解吸处理,回收其中的VOCs,同时使溶剂得以再生。该技术不仅能消除气态污染物,还能回收一些有用物质,去除率可达到95%一98%。液体吸收技术优点是投资少、运行费用低、工艺流程简单、吸收剂价格便宜、适用于废气流量较大、浓度较高、温度较低和压力较高情况下的VOCs处理;缺点是过程复杂、费用较高、设备易受腐蚀、存在二次污染、对设备要求较高、需定期更换吸收剂。
3.1.2吸附回收技术
吸附回收技术是利用多孔固体吸附剂处理VOCs废气,使其中所含一种或数种组份浓缩于固体表面,以达到分离目的。吸附回收技术在VOCs处理过程中应用极为广泛,主要用于低浓度高通量有机废气(如含碳氢化合物废气)净化。该技术优点是能耗低、无毒害、去除率高,工艺完备、无二次污染、气体去除较彻底、操作方便且能实现自动控制;缺点是由于吸附容量受限,不适于处理高浓度有机气体,当废气中有胶粒物质或其他杂质时,吸附剂易失效,同时吸附剂需要再生。
3.1.3冷凝回收技术
冷凝回收技术是通过降低温度或提高系统压力使气态VOCs转为其他形态,依靠VOCs与其他气体在不同温度下饱和蒸汽压不同的性质,从而分离出来的方法。冷凝回收技术优点是较适用于高沸点、高浓度、须回收VOCs,通常可作为吸附技术或催化燃烧技术等辅助手段;缺点是浓度过低时,因其低温高压消耗能量较大,设备操作费用较高,对高挥发和中等挥发性VOCs净化效果不理想。
3.1.4膜分离回收技术
膜分离回收技术是利用VOCs和其他气态污染物,对天然膜或人工合成膜穿透、滤过或其他动力性质不同,从而使VOCs从混合物中分离出来的方法。膜分离回收技术于20世纪70年代开始发展,于90年代末开始在日本应用于工厂,最早用于汽油回收,之后还用于石油化工中甲苯、乙烷、氯乙烯和二氯甲烷等分离回收。该法适用于高浓度VOCs处理,通常要求VOCs体积分数在0.1%以上,并适合与其他技术配合使用。膜分离回收技术优点是对不同VOCs普适性好、回收效率高(可达90%)、无二次污染、适用于各种VOCs,可用于低沸点难处理VOCs等;缺点是成本高、对设备要求高、一些分离膜等材料非常昂贵。
3.1.5膜基吸收回收技术
膜基吸收技术是采用中空纤维微孔膜,使需要接触两相分别在膜两侧流动,两相接触发生在膜孔内或膜表面界面,可避免两相直接接触,防止乳化现象发生。与传统膜分离技术相比,膜基吸收选择性取决于吸收剂,且膜基吸收只需低压作为推动力,使两相流体各自流动,并保持稳定接触界面。膜基吸收技术处理VOCs,具有能耗低、流程简单、回收率高、无二次污染等优点。该技术对极性和非极性VOCs均能去除,小流量和大流量均能适用,而且它是一个连续过程,净化VOCs效率很高,且可回收有机物。
3.2销毁技术
3.2.1催化燃烧技术
催化燃烧技术是在较低温度下,在催化剂作用下使废气中可燃组份彻底氧化分解,从而使气体得到净化处理的一种废气处理方法,该方法适用于处理可燃或高温下可分解的VOCs。催化燃烧技术优点是能耗低、安全性高、无二次污染、工艺操作简单、可用来消除恶臭、对可燃组份度和热值限制较小、大部分VOCs在200C一400C即可完成反应、辅助燃料消耗少且大量减少NOx产生、适用于气态和气溶胶态污染物治理;缺点是工艺条件要求严格、不允许废气中含有影响催化剂寿命和处理效率的尘粒和雾滴,不允许有使催化剂中毒物质、处理前须对废气作前处理、不适于处理燃烧过程中产生大量硫氧化物和氮氧化物的VOCs废气。
3.2.2高温焚烧技术
高温焚烧技术主要应用于处理组份较为复杂且浓度较高的VOCs气体。目前,已应用于实践的炉型主要有三种,一是直接焚烧炉,二是对流换热式焚烧炉,三是蓄热式焚烧炉。实际应用中,需参考待处理气体组份等诸多物理和化学性质来选用适宜炉型以及焚烧参数。高温焚烧技术主要应用于制漆工业废气处理以及制药工业废气处理等。
3.2.3生物氧化技术
生氧化技术是利用微生物氧化、代谢、消化等过程,对有机物进行自然分解、降解,最终转化为二氧化碳和水等,流程是含VOCs气体进入设备,先进行加湿处理,然后通人生物滤床,沿着滤床均匀地缓缓移动,通过平流、扩散和吸附等综合效应进人填料液膜中,进一步到生物膜中,与滤床上滤料表面生物菌种进行接触,在微生物作用下发生一系列生物化学反应,使得气体中VOCs被分解、降解。生物氧化技术优点是成本低、设备统一、二次污染小、工艺过程简单等;缺点是效率低、周期较长、设备体积大、处理过程缓慢、对VOCs处理普适性差、难以应用于混合VOCs废气、只能降解某些特定有机物、一些生物菌种需要额外加入营养物质、生物菌种对降解温度及pH值等环境条件要求高。
3.2.4光催化氧化技术
光催化氧化技术是近年来日益受到重视的污染治理新技术,对VOCs降解率可达到90%一95%。该技术是指在一定波长光照下,利用催化剂光催化活性,使吸附在其表面的VOCs发生氧化还原反应,最终将有机物氧化成CO2、H2O及无机小分子物质。在近几年研究中,纳米TiO,光催化氧化技术日益显露出其优势。纳米TiO,是一种新型高功能精细无机产品,其粒径介于1~100nm。由于它的比表面积大,化学稳定性和催化活性高,价廉且来源广泛,对紫外光吸收率较高,抗光腐蚀性,且没有毒性,对很多有机物有较强吸附作用,使得它在去除气态污染物面有着明显优势。光催化氧化技术优点是能耗低,选择性宽,操作简便,催化剂无毒,反应条件温和(常温、常压),价格相对较低,无副产物生成,使用后催化剂可用物理和化学方法再生后循环使用,几乎对所有污染物均具净化能力等。
3.2.5低温等离子体技术
等离子体是处于电离状态气体,被称作除固态、液态和气态之外第四种物质存在形态。它是由大量带电粒子(离子、电子)和中性粒子(原子、激发态分子及光子)所组成的体系,因其总的正、负电荷数相等,故称为等离子体。低温等离子体技术是在外加电场作用下,通过介质放电产生大量高能粒子,当高能粒子能量高于VOCs化学键能时,高能粒子不断轰击可使VOCs化学键断裂、电离,从而破坏VOCs分子结构,生成小分子低毒无毒物质,达到消除VOCs目的。低温等离子技术主要有电子束照射法、介质阻挡放电法、沿面放电法和电晕放电法等。低温等离子体技术具有以下优点:①能耗低,可在室温下与催化剂反应,无需加热,极大地节约了能源;②使用便利,设计时可以根据风量变化以及现场条件进行调节;③不产生副产物,无二次污染,催化剂可选择性地降解等离子体反应中所产生的副产物;④处理VOCs种类范围较广,去除效率高,对浓度要求低,尤其适于处理有气味及低浓度大风量VOCs。
3.3组合技术
VOCs成分极其复杂,不同类型化合物性质各异,大多数行业VOCs又以混合物形式排放,因此采用单一治理技术往往难以达到治理效果,在经济上也不划算,通常情况下需采用组合技术才能实现达标排放,降低治理费用,并达到较好治理效果。
3.3.1吸附浓缩一催化燃烧技术
吸附浓缩一催化燃烧技术是采用蜂窝状活性炭为吸附剂,结合吸附净化、脱附再生并浓缩VOCs和催化燃烧原理,即将大风量、低浓度有机废气通过蜂窝状活性炭吸附以达到净化空气目的,当活性炭吸附饱和后再用热空气脱附使活性炭得到再生,脱附出浓缩的有机物被送往催化燃烧床进行催化燃烧,有机物被氧化成无害的CO2和H2O,燃烧后热废气通过热交换器加热冷空气,热交换后降温气体部分排放,部分用于蜂窝状活性炭脱附再生,达到废热利用和节能目的。该技术优点是净化效率高、运行成本低、无二次污染、处理风量范围大、吸附装置小型化阻力低、一次启动后无需外加热、使用中低压风机降低了能耗和噪声、燃烧后热废气又用于对活性炭脱附再生,达到了废热利用和有机物处理目的。
3.3.2吸附浓缩一蓄热燃烧技术
催化燃烧技术和高温焚烧技术是最为普遍VOCs治理技术,也是目前VOCs治理最为有效彻底的治理技术。无论是热力焚烧法还是催化燃烧法都需要将废气加热到相应燃烧温度。如果废气中有机物浓度较高,废气燃烧后所产生热量可以维持有机物分解所需要的反应温度,采用燃烧法是一种经济可行的方法。传统的催化燃烧技术和高温焚烧技术由于换热效率低,当废气中有机物浓度较低时,需要大量能耗,治理设备运行费用高。为了提高热利用效率,降低设备运行费用,近年来发展了蓄热式热力焚烧技术(RTO)和蓄热式催化燃烧技术(RCO)。蓄热系统是使用具有高热容量的陶瓷蓄热体,采用直接换热方法将燃烧尾气的热量蓄积在蓄热体中,高温蓄热体直接加热待处理废气,换热效率可达到90%以上,而传统的间接换热器的换热效率一般在50%~70%。蓄热式(催化)燃烧技术的发展大大拓宽了催化燃烧技术和高温焚烧技术的应用范围,可以在较低VOCs浓度下使用,近年来得到了广泛应用,并逐步替代了传统催化燃烧技术。
3.3.3吸附浓缩一液体吸收技术
吸附浓缩一液体吸收技术是采用活性炭为吸附剂,结合吸附净化、脱附再生并浓缩VOCs和液体吸收原理,即将大风量、低浓度有机废气通过活性炭吸附以达到净化空气目的,当活性炭吸附饱和后再用热空气脱附使活性炭得到再生,脱附出浓缩的有机物采用沸点较高、蒸汽压较低有机溶剂作为吸收剂,利用VOCs在吸收剂中溶解度或化学反应特性差异,使VOCs从气相转移到液相,然后对吸收液进行解吸处理,回收其中VOCs,同时使溶剂得以再生。该技术优点是投资少、运行费用低、工艺流程简单、吸收剂价格便宜、适用于废气流量较大、浓度较高、温度较低和压力较高情况下VOCs处理;缺点是存在二次污染、对设备要求较高、需定期更换吸收剂。
3.3.4低温等离子体一吸收技术
低温等离子体一吸收技术净化VOCs机理是在~l,JJu电场作用下,通过介质放电产生大量高能粒子,当高能粒子能量高于VOCs化学键能时,高能粒子不断轰击可使VOCs化学键断裂、电离,从而破坏VOCs分子结构,生成小分子低毒无毒有机物,生成有机物再采用沸点较高、蒸汽压较低有机溶剂作为吸收剂,利用VOCs在吸剂中溶解度或化学反应特性差异,使VOCs从气相转移到液相,然后对吸收液进行解吸处理,回收其中VOCs,同时使溶剂得以再生。该技术优点是操作简便、处理效率高、吸收剂价格便宜、适用于低浓度大风量VOCs处理;缺点是存在二次污染、对设备要求较高、需定期更换吸收剂。
3.3.5低温等离子体一催化技术
低温等离子体一催化技术净化VOCs机理是有机物分子在高能电子作用下形成各种自由基、带电中间体、小分子烃等,在催化剂作用下使可燃组份彻底氧化分解,从而使气体得到净化处理的一种VOCs处理方法,由于催化作用有特殊选择性,对相同反应物,选择不同催化剂就可得到不同产物。低温等离子体催化技术优点是能耗低、安全性高、无二次污染、工艺操作简单、不产生副产物、处理效率高、尤其适用于低浓度大风量VOCs废气治理;缺点是工艺条件要求严格、不允许废气中含有影响催化剂寿命和处理效率的尘粒和雾滴,不允许有使催化剂中毒的物质、处理前须对废气作前处理、不适于处理燃烧过程中产生大量硫氧化物和氮氧化物VOCs废气。
“十二五”国家大气污染防治规划将大气污染防治工作扩展至挥发性有机污染物,实行多污染联合控制,提出全面展开挥发性有机物污染防治工作,确定重点区域挥发性有机物污染防治目标。随着VOCs污染排放标准陆续颁布、管理制度体系逐步建立和排污收费制度深入推进,进行末端治理代价稳步提高,迫使污染源企业益注重清洁生产工艺,从源头减少VOCs使用量和排放量。当前,VOCs治理难点在于其成分极其复杂,不同类型化合物性质各异,大多数行业所产生的VOCs又是以混合物形式排放。因此采用单一治理技术往往难以达到治理效果,在经济上也不合理,通常情况下需要采用多种治理技术组合治理工艺。采用组合治理技术,从净化效果上考虑是为了实现污染物达标排放,从经济成本上考虑可以降低治理费用,以最低代价实现治理效果,实现废气、废水达标排放,因此成为VOCs治理技术研发重点。